
CS 262 Lecture 2: Fundamentals

Variables and Constants
Assignment operators
Relational operators
Logical operators

Data Types
Primitive types (native to C)
Different ways of representing data

Assignment Operators

Standard Libraries
Libraries built into C
Contains a lot of basic functionality

Printing Formatted Data
Printing variables of different types
Aligning printed data

Overview of Lecture 2

Data Types Assignment OperatorsLogistics Standard C Libraries Printing Formatted DataVariables, Constants

Reminders

Notices
The first questions for the practice midterm are posted in Canvas
Anonymous instructor feedback form is posted in Canvas

Data Types Assignment OperatorsLogistics Standard C Libraries Printing Formatted DataVariables, Constants

Identifiers (Variable Names)

Rules for identifiers
Must start with a letter or an underscore _
 note – C is case-sensitive

Identifiers can only contain letters, numbers, or underscores
Identifiers cannot be keywords (if, for, while)

Good Practices
Use descriptive variable names
Be consistent with convention (camelCase vs underscores)

 These examples will work These examples won’t work

int 5thVariable = -1
int spaces dont work = -1
char h$%ello^ = ‘X’

int underscores_work = 1
int thisIsCamelCase = 1
char descriptive_name = ‘A’

Data Types Assignment OperatorsLogistics Standard C Libraries Printing Formatted DataVariables, Constants

Declaring Variables

Rules for variables in C
All variables must be declared with a type
If we don’t initialize it, it will contain a ‘garbage’ value. Believe it
or not, this relates to C being fast and efficient

Data Types Assignment OperatorsLogistics Standard C Libraries Printing Formatted DataVariables, Constants

int num = 10;

Type

Name

Assignment
Operator

Expression

Constants

C has two styles of constants

Data Types Assignment OperatorsLogistics Standard C Libraries Printing Formatted DataVariables, Constants

// Example: #define IDENTIFIER value

#define PI 3.14

Style 1 (most common)

// Example: const int identifier = value

const float pi = 3.14;

Style 2

Constants

Constants can greatly increase readability

Data Types Assignment OperatorsLogistics Standard C Libraries Printing Formatted DataVariables, Constants

if (value > 378) { ...

// 378 seems random, hard to read

// we call these magic numbers. They are best avoided

if (value > MAX_VALUE) { ...

// MAX_VALUE is a descriptive, self-explanatory name

Bad programming practice

Good programming practice

Data Types

There are three primitive type categories in C

No values and No Operations
Used in Parameters and Returns

Stores integers
Can be Signed or Unsigned

Approximates Real Numbers (Fractional Values)
Large Ranges, but it does Round

Data Types Assignment OperatorsLogistics Standard C Libraries Printing Formatted DataVariables, Constants

void

float

int

Data Types

There are four different sizes of integer in C
 Note: The actual sizes of each are system-dependent

Typical size: 1 byte

Typical size: 2 bytes

Typical size: 4 bytes

Typical size: 8 bytes

Data Types Assignment OperatorsLogistics Standard C Libraries Printing Formatted DataVariables, Constants

int

short int

char

long int

Data Types

There are three different sizes of floats in C
 Note: The actual sizes of each are system-dependent

Typical size: 4 bytes

Typical size: 8 bytes

Data Types Assignment OperatorsLogistics Standard C Libraries Printing Formatted DataVariables, Constants

float

double

Doubles and long doubles offer more accurate
approximations

long double Typical size: 16 bytes

Signed vs Unsigned Types - Range

Signed Integers
Can represent both positive and negative values

Unsigned Integers
Can only represent positive values

What do you think happens if we try to go above the max values?

4 Bit Integer Minimum
Unsigned Value

Maximum
Unsigned Value

Minimum
Signed Value

Minimum
Signed Value

bbbb (4 bits) 0000 (0) 1111 (15) 1000 (-8) 0111 (7)

Data Types Assignment OperatorsLogistics Standard C Libraries Printing Formatted DataVariables, Constants

Signed vs Unsigned Types - Range

How do we check the size of a variable type?

Data Types Assignment OperatorsLogistics Standard C Libraries Printing Formatted DataVariables, Constants

4 Bit Integer Minimum
Unsigned Value

Maximum Unsigned
Value

Minimum Signed
Value

Minimum Signed
Value

1 byte 0 15 -8 7
2 bytes 0 65,535 -32,768 32,767
4 bytes 0 4,294,967,295 -2,147,483,648 2,147,483,647
8 bytes 0 2^(64) - 1 -2^(63) 2^(63) - 1

sizeof(variable_type) // returns the size of the type passed in

Reference table for integer type ranges

More On Declaring Variables

Type Format Example
char Single quotes char ch = ‘q’;

int Plain integer value int x = 123;

unsigned int Add U to the end int y = 12345U;

long Add L to the end long z = 12345L;

float Add F to the end float a = 12.34F;

double Plain decimal number double b = 12.34;

Octal Value Put 0 in the front int oct = 052;

Hex Value Put 0x in front int hex = 0x3F;

Binary Value Put b in the front int bin = 0b10110;

Data Types Assignment OperatorsLogistics Standard C Libraries Printing Formatted DataVariables, Constants

Assignment Operators

Assignment OperatorsJust like you remember them in other languages. These let
you assign values to variables

Data Types Assignment OperatorsLogistics Standard C Libraries Printing Formatted DataVariables, Constants

Symbol Basic assignment operator Example

= Basic assignment operator var1 = 3 // var1 is 3

+= Addition assignment var1 += 2 // var1 is now 5

-= Subtraction assignment var1 -= 1 // var1 is now 4

*= Multiplication Assignment var1 *= 10 // var1 is now 40

/= Division Assignment var1 /= 2 // var1 is now 20

%= Modulus Assignment var1 %= 3 // var1 is now 2

Assignment Operators

Let’s Practice

int value = 1;
value += 5;
value *= 3;

// value = _____

int val1 = 1;
int val2 = 3;
val2 += val1;
val1 *= val2;

// val2 = _____
// val1 = _____

Data Types Assignment OperatorsLogistics Standard C Libraries Printing Formatted DataVariables, Constants

Let’s Practice
Pay close attention – These resemble what you will see on quizzes
and exams

Standard C Libraries

All functions in C need a Library to be Included

Library Description
stdio.h Basic Input and Output Functions / File Functions
stdlib.h Memory Functions, Searching, Conversions
string.h String Functions
math.h Math Functions and Math Constants
time.h Time and Date Functions

Data Types Assignment OperatorsLogistics Standard C Libraries Printing Formatted DataVariables, Constants

Standard C Libraries
stdio.h

Function Description
printf(...) Writes Formatted Data to the Output Device (screen)

scanf(...) Reads Formatted Data from the Input Device (keyboard) into Variables

sscanf(...) Reads Formatted Data from an Input String into Variables

fgets(...) Reads User Input from stdin (keyboard) into a String

Function Description
sqrt(val) Returns the Square Root of the Parameter

ceil(val) Returns the Ceiling (Round val up to the next Integer)

floor(val) Returns the Floor (Round val down to the next Integer)

pow(d1, d2) Raises d1 to the power of d2 and returns the result

math.h (Needs a special compile option to use. Add –lm during gcc)

Data Types Assignment OperatorsLogistics Standard C Libraries Printing Formatted DataVariables, Constants

stdlib.h

Function Description
rand() Returns a random value as an int. (Random in range of an int)
srand(val) Initializes the Random Number Generator with input val.

string.h

Function Description
strlen(str) Returns the number of characters in the String
strcpy(s1, s2) Copies string s2 into string s1. (strncpy is the Safer version)
strcat(s1, s2) Concatenates s2 to the end of s1. (strncat is the Safer version)

Standard C Libraries

Data Types Assignment OperatorsLogistics Standard C Libraries Printing Formatted DataVariables, Constants

Printing Formatted Data

The printf function will print out formatted data

For values, we use something called Conversion characters –
Placeholders to represent values that will be substituted into a string
that tell the system how to format the value

printf(“You are %d years old\n”, age);

Data Types Assignment OperatorsLogistics Standard C Libraries Printing Formatted DataVariables, Constants

int printf(“hello\n”)

%d is the format
specifier for int

Printing Formatted Data

We can have multiple conversion characters in a print
statement

printf(“%s is %d years old\n”, name, age);

Data Types Assignment OperatorsLogistics Standard C Libraries Printing Formatted DataVariables, Constants

%s is the format
specifier for string

Printing Formatted Data
% Conversion Codes for printf and scanf

% Code Description Example
c Character printf(“Letter %c\n”, ‘A’); // “Letter A”

d Integer printf(“She is %d\n”, 20); // “She is 20”

u Unsigned Int printf(“He is = %u\n”, 10); // “He is 10”

f Floating-Point printf(“Pi is %f\n”, 3.14); // “Pi is 3.14”

s String printf(“I am %s\n”, “hungry”); // “I am hungry”

Data Types Assignment OperatorsLogistics Standard C Libraries Printing Formatted DataVariables, Constants

% Code Description Example
h short int (short) printf(“%hu\n”, 3); // “3”

l long int (long) printf(“%li\n”, 42); // “42”

l double printf(“%lf\n”, 4.12); // “4.12”

And for Floating-Point Values

Printing Formatted Data – Escape Codes

Escape Sequences for Strings

Code Description Example
\b Backspace printf(“Hi!\b”); // “Hi”

\t Tab printf(“Hi\t!”); // “Hi !”

\n New Line printf(“Hi\n!”); // ”Hi

 !”

\r Carriage Return printf(“Hi!\rMy”); // “My!”

\” Quotation printf(“Hi \”Me\” !”); // “Hi “Me” !”

\’ Apostrophe printf(“It\’s Me !”); // “It’s Me !”

\0 Null Character printf(“Hi!\0”); // “Hi!”

\\ Backslash printf(“Hi\\!”); // “Hi\!”

Data Types Assignment OperatorsLogistics Standard C Libraries Printing Formatted DataVariables, Constants

Printing Formatted Data

printf lets us specify width and precision

Data Types Assignment OperatorsLogistics Standard C Libraries Printing Formatted DataVariables, Constants

float pi = 3.1416f;

printf(“Pi to 2 decimal places = %.2f”, pi);

This prints 2 numbers
after the decimal

int num = 3;

printf(“int with width 5: %5d”, num);

This specifies a width of 5
(will always take up 5 spaces

Printing Formatted Data

printf also lets us add padding: the addition of extra data
to achieve a specific size

Example: Adding 0 before the width will pad with that many 0s

Data Types Assignment OperatorsLogistics Standard C Libraries Printing Formatted DataVariables, Constants

float pi = 3.14;

printf(“pi padded with some 0s: %020.2f”, pi);

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

