
CS 262 Lecture 3: User Input, Expressions

Operators
A familiar topic from other languages

Expressions
What exactly are expressions?
What types of expressions does C
have?

Getting User Input
It’s a bit unique in C since C can
directly manipulate memory

Overview of Lecture 3

Logistics Operators Expressions Type Casting and Conversion User Input

Reminders

Notices
The videos for lecture 2 content are posted under the Lecture 2
module on Canvas

A step-by-step guide for getting VSCode set up to connect to Zeus is
posted under the Lecture 2 module

The practice midterm is updated to include material through last
lecture

Logistics Operators Expressions Type Casting and Conversion User Input

Operators

Operators are symbols that tell the compiler to perform a specific
operation on one or more operands
C has many different types of operators

Arithmetic operators
Bitwise operators
Relational operators
Assignment operators
Logical operators
Increment and decrement operators
Ternary operators
Some additional special operators

Logistics Operators Expressions Type Casting and Conversion User Input

Operators

Operators are symbols that tell the compiler to perform a specific
operation on one or more operands
Arithmetic Operators:

Operator Description Example Result
+ Addition 5 + 3 8

- Subtraction 7 - 4 3

* Multiplication 3 * 20 60

/ Division 80 / 10 8

% Modulus (remainder) 5 % 2 1

Note: Division between integers truncates the result (no decimals).
We will show how to address this later with type casting

Logistics Operators Expressions Type Casting and Conversion User Input

Operators

Relational (comparison) operators:
 Compare 2 values and return 1 (true) or 0 (false)

Operator Description Example Result
== Equal to 5 == 3 0

!= Not equal to 5 != 3 1

< Less than 5 < 2 0

> Greater than 5 > 2 1

<= Less than or equal to 5 <= 2 0

>= Greater than or equal to 5 >= 2 1

Logistics Operators Expressions Type Casting and Conversion User Input

Operators

Assignment operators (refresher from last class)
 Assign values to variables (can be combined with other operations)

Operator Description Example Result
= Basic assignment x = 5 x = 5

+= Add and assign x += 2 x = x + 2

-= Subtract and assign x -= 2 x = x - 2

*= Multiply and assign x *= 2 x = x * 2

/= Divide and assign x /= 2 x = x / 2

%= Modulus and assign x %= 2 x = x % 2

Logistics Operators Expressions Type Casting and Conversion User Input

Operators

Ternary operators
 A short of shorthand for if-else
 Format:

Comma operators
 Evaluates multiple expressions, returns the last value

int x = (y = 2, y + 3) // x is 5

Logistics Operators Expressions Type Casting and Conversion User Input

result = (condition) ? value_if_true : value_if_false

Expressions

Expressions are any combination of variables, constants, and
operators that the compiler can evaluate to produce a single value

Value: The result of evaluating the expression
Type: The data type of the result
Side effects: The expression can change the state of the program (like using the
assignment operator)

Examples:

Logistics Operators Expressions Type Casting and Conversion User Input

x = 10; // The assignment operator = assigns 10 to x

3 * (5 + 2); // Result is = 21

int is_greater = (5 > 3); // Evaluates to 1 (true)

x = y + 2; // x gets the value of y + 2

Expressions: Formal Definitions

Binary Expression: An expression involving one operator and two
operands

Logistics Operators Expressions Type Casting and Conversion User Input

Operator

x = y + z

Operand Operand

x = 10 + 30; // Binary expression

y = x / 1; // Another binary expression

z = x – y; // And another

Expressions: Formal Definitions

Unary expressions: Expressions involving one operator and one
operand

Be careful with chaining prefix and postfix increments/decrements
If a was 10, then b = a++; will set b = 10 and a = 11
If a was 10, then b = ++a; will set b = 11 and a = 11

Operator Operator Name Description

++x Prefix increment Increments x, then evaluated

x++ Postfix increment Evaluates x, then incremented

--x Prefix decrement Decrements x, then evaluated

x-- Postfix decrement Evaluated, then decrements x

Logistics Operators Expressions Type Casting and Conversion User Input

Operator

x++Operand

Expressions: Formal Definitions

Ternary expressions: Special conditional expressions of the form:

 If a is True (non-zero), then this expression evaluates to b’s value.

 If a is False (zero), then this expression evaluates to c’s value instead.

Logistics Operators Expressions Type Casting and Conversion User Input

x ? y : z

set_speed = (speed > SPEED_LIMIT) ? SPEED_LIMIT : speed;

// equivalent if-else:

if(speed > SPEED_LIMIT) {

 set_speed = SPEED_LIMIT;

}

else {

 set_speed = speed;

}

Operator Precedence

Operator precedence table:
Precedence is which operators are evaluated first.
Associativity is which order operators in the same precedence are evaluated.

Precedence Operators Description Associativity

1 (highest) (…), [] Function calls, array subscript Left to Right

2 !, ~, ++, --, type casts Unary operators, casts Right to Left

3 *, /, % Multiplication, Division, Modulus Left to Right

4 +, - Arithmetic Left to Right

7 ==, != Comparisons Left to Right

11 && Logical AND Left to Right

12 || Logical OR Left to Right

13 ? : Ternary (Conditional) Right to Left

14 =, +=, -=, *=, /=, %= Assignments Right to Left

15 , Comma operator Left to Right

Logistics Operators Expressions Type Casting and Conversion User Input

Operator Precedence - Example

Logistics Operators Expressions Type Casting and Conversion User Input

What order do we think the following expression will be evaluated
in?

int num = x - ++y * (z + 2);

Operator Precedence - Example

Logistics Operators Expressions Type Casting and Conversion User Input

The unary increment is evaluated: ++y, so now y equals 4
Then, we evaluate z + 2: now z equals 5
Now, the multiplication between ++y and (z + 2) is evaluated:
++y * (z + 2) = 28
Next, x – the above result is computed:
x – ++y * (z + 2) = -26

Finally, num is set equal to this result

int x = 2;

int y = 3;

int z = 5;

int num = x - ++y * (z + 2);

Type Casting

One type can be cast to another for an expression
This results in only a temporary change for the variable

Cast operator:
 (type) variable
Example:

Logistics Operators Expressions Type Casting and Conversion User Input

char ch = ‘A’;

int ascii_value = (int)ch);

printf(“ch is %d bytes\n”, sizeof(ch));

printf(“ascii_value is %d bytes\n”, sizeof(ascii_value));

But ch is still a char (this
prints 1 since char is 1

byte)

ch is cast to an
int here

Quick Digression: The sizeof() Function

char ch = ‘A’;

int ascii_value = (int)ch);

printf(“ch is %d bytes\n”, sizeof(ch));

printf(“ascii_value is %d bytes\n”, sizeof(ascii_value));

The sizeof() function returns the size (in bytes) of what is passed in
sizeof(int) returns the number of bytes of an int
sizeof(char) returns the number of bytes of a char
sizeof(x) returns the number of bytes of the variable x

sizeof(ch) and sizeof(ascii_value) would show that sizeof(ch) is
still 1 byte (the size of a char) and sizeof(ascii_value) is whatever size an
int is on your system

Logistics Operators Expressions Type Casting and Conversion User Input

Implicit Conversions and “Promotion”

int x = 100;

short y = 5;

long z = (x + y);

In C, all operands must have the same type
When the types differ, one is implicitly converted
This follows a set hierarchy, where smaller types are cast to the bigger one

Example:

Logistics Operators Expressions Type Casting and Conversion User Input

y, a short, is cast
to match x, an int

The final result is cast
to match z, a long

User Input

Logistics Operators Expressions Type Casting and Conversion User Input

A string is read into the
buffer from the keyboard
(stdin)

fgets reads the formatted
data and stores values in
variables

User Input

The sscanf function reads a formatted string into variables

If buffer is a string with 2 numbers, sscanf will read the first number and put it
into the first variable val1, then read the second number and put it into val2

sscanf(buffer, “%d %d”, &num1, &num2);

Logistics Operators Expressions Type Casting and Conversion User Input

int sscanf(buffer, “Format codes”, &variable);

User Input

% Conversion codes for printf and sscanf

% Code Description Example

c Character sscanf(buffer, “%c”, &val);

i or d Integer sscanf(buffer, “%d”, &val);

u Unsigned Int sscanf(buffer, “%u”, &val);

hd short int (short) sscanf(buffer, “%hd”, &val);

ld long int (long) sscanf(buffer, “%ld”, &val);

f floating-point sscanf(buffer, “%f”, &val);

lf double sscanf(buffer, “%lf”, &val);

s String sscanf(buffer, “%s”, val);

Logistics Operators Expressions Type Casting and Conversion User Input

User Input

The fgets function lets us read a string from the keyboard

fgets reads input from the keyboard (stdin) into a string, called the buffer,
containing enough space for buffer_len total characters in it

There are other ways of getting input, however these are unsafe
scanf read input directly into variables, and can result in overflows
gets, which reads a full line of input with no limit on character count, is so
unsafe it was removed from modern C standards

Logistics Operators Expressions Type Casting and Conversion User Input

fgets(buffer, buffer_len, stdin);

User Input

The buffer used by fgets is an array we create

The steps for getting user input are
1. We create an array of buffer_len characters to hold the user input
2. We read the user input
3. We use sscanf to load the data into the variables

Logistics Operators Expressions Type Casting and Conversion User Input

char buffer[buffer_len];

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

