CS 262 Lecture 3: User Input, Expressions

(G V, | GEORGE MASON
UNIVERSITY.

Logistics Operators Expressions Type Casting and Conversion User Input
o

Overview of Lecture 3

Operators Getting User Input

A familiar topic from other languages It’s a bit unique in C since C can

. irectly manipulate memor
Expressions directly P y

What exactly are expressions?

What types of expressions does C
have?

Logistics Operators Expressions Type Casting and Conversion User Input
o

Reminders

Notices

The videos for lecture 2 content are posted under the Lecture 2
module on Canvas

A step-by-step guide for getting VSCode set up to connect to Zeus is
posted under the Lecture 2 module

The practice midterm is updated to include material through last
lecture

Logistics Operators Expressions Type Casting and Conversion User Input
[]

Operators

Operators are symbols that tell the compiler to perform a specific
operation on one or more operands

C has many different types of operators
Arithmetic operators
Bitwise operators
Relational operators
Assignment operators
Logical operators
Increment and decrement operators

Ternary operators
Some additional special operators

Logistics Operators Expressions Type Casting and Conversion User Input
o

Operators

Operators are symbols that tell the compiler to perform a specific
operation on one or more operands

Arithmetic Operators:

Opeaer Doscrpton___gsampie _resut ___

Addition 5 + 3
= Subtraction 7 - 4 3
* Multiplication 3 * 20 60
/ Division 80 / 10 8
% Modulus (remainder) 5 % 2 1

Note: Division between integers truncates the result (no decimals).
We will show how to address this later with type casting

Logistics Operators Expressions Type Casting and Conversion User Input
o

Operators

Relational (comparison) operators:

Compare 2 values and return 1 (true) or 0 (false)

Operator Description ______bxample _[Resu_

Equal to 5 0
= Not equal to 5 1= 3 1
< Less than 5 < 2 0
> Greater than 5 > 2 1
<= Less than or equal to 5 <= 2 0
>= Greaterthanorequalto 5 >= 2 1

Logistics Operators Expressions Type Casting and Conversion User Input
o

Operators

Assignment operators (refresher from last class)

Assign values to variables (can be combined with other operations)

Cpeer Deseipion __[oamoie__resut___

Basic assighment X X 5
+= Add and assign X += 2 X =x + 2
—= Subtract and assign X —-= 2 X = X = 2
* = Multiply and assign X *= 2 X = X * 2
/= Divide and assign x /= 2 X =x / 2
&= Modulus and assign X %= 2 X =xXx % 2

Logistics Operators Expressions Type Casting and Conversion User Input
[]

Operators

Ternary operators
A short of shorthand for if-else

Format:

result = (condition) ? value if true : value if false

Comma operators
Evaluates multiple expressions, returns the last value

int x = (y=2, v+ 3) // x is 5

Logistics Operators Expressions Type Casting and Conversion User Input
o

Expressions

Expressions are any combination of variables, constants, and
operators that the compiler can evaluate to produce a single value
Value: The result of evaluating the expression
Type: The data type of the result
Side effects: The expression can change the state of the program (like using the
assignment operator)

Examples:

x = 10; // The assignment operator = assigns 10 to x
3 * (5 + 2); // Result is = 21

int is greater = (5 > 3); // Evaluates to 1 (true)

x =y + 2; // x gets the value of y + 2

Logistics Operators Expressions Type Casting and Conversion User Input

Expressions: Formal Definitions

Binary Expression: An expression involving one operator and two

operands

X =y + z

x = 10 + 30; // Binary expression
x / 1; // Another binary expression
x — vy; // And another

N &
[

Logistics Operators Expressions Type Casting and Conversion User Input
o

Expressions: Formal Definitions

Unary expressions: Expressions involving one operator and one
operand

++x Prefix increment Increments x, then evaluated
x++ Postfix increment Evaluates x, then incremented
——-X Prefix decrement Decrements x, then evaluated
= Postfix decrement Evaluated, then decrements x

Be careful with chaining prefix and postfix increments/decrements
If awas 10,thenb = a++; willsetb=10anda=11
If awas 10,thenb = ++a; willsetb=11anda=11

Logistics Operators Expressions Type Casting and Conversion User Input
o

Expressions: Formal Definitions

Ternary expressions: Special conditional expressions of the form:

X ?y : z

If ais True (non-zero), then this expression evaluates to b’s value.
If ais False (zero), then this expression evaluates to c’s value instead.

set speed = (speed > SPEED LIMIT) ? SPEED LIMIT : speed;
// equivalent if-else:
if (speed > SPEED LIMIT) ({

set speed = SPEED LIMIT;

}

else {
set speed = speed;

}

Logistics Operators Expressions Type Casting and Conversion User Input
o

Operator Precedence

Operator precedence table:

Precedence is which operators are evaluated first.
Associativity is which order operators in the same precedence are evaluated.

1 (highest) Function calls, array subscript Left to Right
2 I, ~, ++, --, type casts Unary operators, casts Right to Left
3 * [, % Multiplication, Division, Modulus Left to Right
4 +, - Arithmetic Left to Right
7 == I= Comparisons Left to Right
11 && Logical AND Left to Right
12 || Logical OR Left to Right
13 ?: Ternary (Conditional) Right to Left
14 = +=, -=, *= [= U= Assignments Right to Left
15 , Comma operator Left to Right

Logistics Operators Expressions Type Casting and Conversion User Input
o

Operator Precedence - Example

What order do we think the following expression will be evaluated
in?

int num = x - ++y * (z + 2);

Logistics Operators Expressions Type Casting and Conversion User Input
o

Operator Precedence - Example

int x = 2;
int v = 3;
int z = 5;

int| num =[x —‘- * | (z + 2)\

The unary increment is evaluated: ++y, so now y equals 4

Then, we evaluate z + 2:now z equals 5

Now, the multiplication between ++y and (z + 2) is evaluated:
++y * (z + 2) = 28

Next, x —the above result is computed:

X — ++ty * (z + 2) = -26

Finally, num is set equal to this result

Logistics Operators Expressions Type Casting and Conversion User Input
o

Type Casting

One type can be cast to another for an expression
This results in only a temporary change for the variable

Cast operator:

(type) variable
- But ch is still a char (this
. h tt
Example. ¢ |isnc;ahsereo an prints 1 since char is 1
byte)
char ch = ‘A’ ;
int ascii value = (int)ch);

printf(“ch is %d bytes\n”, sizeof(ch));
printf (“ascii value is %d bytes\n”, sizeof(ascii value));

Logistics Operators Expressions Type Casting and Conversion User Input
O

Quick Digression: The sizeof() Function

The sizeof () function returns the size (in bytes) of what is passed in

sizeof (int) returns the number of bytesofan int
sizeof (char) returns the number of bytes of a char
sizeof (x) returns the number of bytes of the variable x

sizeof (ch) and sizeof (ascii value) would showthat sizeof (ch) is
still 1 byte (the size of a char)and sizeof (ascii value) is whatever size an

int is onyour system

char ch = ‘A’ ;
int ascii value = (int)ch);

printf(“ch is %d bytes\n”,| sizeof (ch));
printf (“ascii value is %d bytes\n”, |sizeof(ascii value));

Logistics Operators Expressions Type Casting and Conversion User Input
o

Implicit Conversions and “Promotion”

In C, all operands must have the same type
When the types differ, one is implicitly converted
This follows a set hierarchy, where smaller types are cast to the bigger one long double

double
Example: float

int x = 100; y, a short, is cast long long

_ . to match x, anint unsigned
short Y = 5 y long int
long z = I(x + y)l ; long int

unsigned int
int
The final result is cast

to match z, a long short

char

Logistics Operators Expressions Type Casting and Conversion User Input

User Input

A string is read into the
buffer from the keyboard
(stdin)

fgets reads the formatted L | > sscanf
data and stores values in Blier | |
variables l l

num1 num2

Logistics Operators Expressions Type Casting and Conversion User Input
o

User Input

The sscanf function reads a formatted string into variables

int sscanf (buffer, “Format codes”, &variable);

sscanf (buffer, “%d %4d”, &numl, &num2) ;

___J

If buf fer is a string with 2 numbers, sscanf will read the first number and put it
into the first variable vall, then read the second number and putitintoval2

Logistics Operators Expressions Type Casting and Conversion User Input
o

User Input

% Conversion codes for printf and sscanf

% Code Description Example

C Character sscanf (buffer, “%c”, &val);

1 or d |[Integer sscanft (buffer, “3d”, &val);
u Unsigned Int sscanf (buffer, “%u”, &val);
hd shortint (short) sscanf (buffer, “%hd”, &val);
1d long int (long) sscanft (buffer, %“%1d”, &val);
f floating-point sscanft (buffer, “3%£”, &val);
1f double sscanf (buffer, “%1f”, &val);
S String sscanft (buffer, “%s8”, val);

Logistics Operators Expressions Type Casting and Conversion User Input
o

User Input

The fgets function lets us read a string from the keyboard

fgets (buffer, buffer len, stdin);

fgets reads input from the keyboard (stdin) into a string, called the buffer,
containing enough space for buffer_len total characters in it

There are other ways of getting input, however these are unsafe
scanf read input directly into variables, and can result in overflows

gets, which reads a full line of input with no limit on character count, is so
unsafe it was removed from modern C standards

Logistics Operators Expressions Type Casting and Conversion User Input
o

User Input

The buffer used by £fgets is an array we create

char buffer[buffer len];

The steps for getting user input are
1. We create an array of buffer len characters to hold the userinput
2. We read the user input
3. We use sscanf to load the data into the variables

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

