CS 262 Lecture 4: Operators Part 2, Control Flow

while [not edge) {
run();

do {
run();
} while (not edge);

(G \/ | GEORGE MASON
UNIVERSITY.

Logistics Operators if, else-if switch statements Loops Finishing Up
[

Overview of Lecture 4

Operators Control Flow - Loops
Relational operators for loops
Logical operators while loops

.. do-while |
Control Flow - Conditional O-WhIte 100ps

Expressions Control Flow - Break, Continue

If statements
else-if statements
switch statements

Logistics Operators if, else-if switch statements Loops Finishing Up
o

Relational Operators

Relational Operators
Let you perform a comparison between two operators with Boolean Algebra
Recall from last class: O is false, anything else is true
A relational operator will always evaluate to either 0 or 1

Operator Descrpion ____bample _Resutt _

Equal to 5 == 3 0 (False)
= Not equal to 5 I'= 3 1 (True)
< Less than 5 < 2 0 (False)
> Greater than 5 > 2 1 (True)
<= Less than or equal to 5 <= 0 (False)
>= Greaterthanorequalto 5 >= 1 (True)

Logistics Operators if, else-if switch statements Loops Finishing Up
[

Logical Operators

Logical Operators
Let you test multiple expressions using Boolean logic
Just like relational operators, these will always evaluate to either 0 or 1

Oeer Dscrion _bramte Rt _

Logical And (1 > 5) && (8 > 3) (False)
|| Logical Or (L > 5) || (8 > 3) 1 (True)
! Logical Not (1 == 5) 1 (True)

These also work with several expressions

(1 >4) || (2> 4) || (3>4) || (4>4) || (5>4)

Logistics Operators if, else-if switch statements Loops Finishing Up
o

Logical Operators

Special Rules/Considerations
false && anything == false
true || anything == true

If the expression is known to be true or false before it finishes
evaluating the entire thing, execution stops

‘ (1 > 2) &&‘(1 == 1) && (1 == 1) && (1 == 1)
We already know the entire
expression is false after this

Logistics Operators if, else-if switch statements Loops Finishing Up
o

If Statements

if Statement

Same as you remember from other languages

if (expression) {
// Execute statementl if expression is true
statementl;

}

else {
// Execute statement2 if expression is false

statement?;

Logistics Operators if, else-if switch statements Loops Finishing Up
o

Nested if Statements

Nested if Statements

if (expressionl) {
// expressionl is true
if (expression2) {
// only executed if both expressionl, expression2 are true
}
else {
// expressionl true, expression2 false

}
}

else {
// expressionl false

}

Logistics Operators if, else-if switch statements Loops Finishing Up
[

else-if statements

else-if statements

if (expressionl) {
// expressionl is true
}
else if (expression2) ({
// expressionl is false, but expression2 is true

}

else {
// both are false

Logistics Operators if, else-if switch statements Loops Finishing Up
o

Switch Statements

switch Statements

A more efficient, but more limited version of if-else-if

switch (expression or variable) {
case 1: printf(“This is case 1\n”);
break;
}
case 2: printf(“This is case 2\n”);
break;
}
case 3: printf(“This is case 3\n”);
break;
}
default: printf (“No cases occurred\n”) ;
break;

Logistics Operators if, else-if switch statements Loops Finishing Up
[

Switch Statements

switch (expression or variable) {

switch Statements - Rules and Behavior case 1 printf (‘This is case 1\a");
}
Only one branch will match case 2: Printf(“This is case 2\a");

case 3: printf(“"This is case 3\n”);
break;

Case values must be int, char, short, or long *

default: printf(“No cases occurred\n”) ;
break;

default is required, and is invoked if no cases match

Each case ends with break; which exits the statement when a branch matches

Logistics Operators if, else-if switch statements Loops Finishing Up
L

Switch Statements vs if-else

switch Statements vs if-else - When Do We Use Them?

Data type Any Only int types

Conditions Can use any comparison Only checks for equality (==)

Execution flow Sequential evaluation Jumps directly to matching case

Readability Good for complex Cleaner for multiple discrete
conditions values

Performance Slower due to sequential Can be faster due to jump table
checking (367 stuff)

Fall-through Behavior Greaterthan orequalto Executes cases sequentially
unless break is used

Logistics Operators if, else-if switch statements Loops Finishing Up
o

Loops

for Loops

Ideal for counting, when we know how many iterations to execute
ahead of time

while Loops
Checks if a condition is true before running

do-while Loops
Always runs at least once before checking the condition

Logistics Operators if, else-if switch statements Loops Finishing Up
[]

for Loop

for Loops

Perfect for when you know how many times you need to execute something

for(int i=0; i<5; i++) {
printf(“i is currently %d\n”, 1i);

}

We can also nest for loops

for(int i=0; i<5; i++) {
for (int j=0; j<i; J++) {
printf(“1i = %d, j = %d\n”, i, j);
}

note: variables declared when a loop is initialized
do not exist outside of the loop

Logistics Operators if, else-if switch statements Loops Finishing Up
[

while Loop

while Loops

Checks if a condition is met, then executes the loop ifitis

char buffer[20];
int number = 0;

printf (“Enter a number (0 to exit)\n”);
fgets (buffer, sizeof (buffer), stdin);
sscanf (buffer, “%d”, &number);

while (number '=0) {
printf (“you entered %d\nEnter another number\n”, number);
fgets (buffer, sizeof (buffer), stdin);
sscanf (buffer, “%d”, &number);

}
printf (“Exiting\n”) ;

Logistics Operators if, else-if switch statements Loops Finishing Up
[

do-while Loop

do-while Loop

Similar to the while loop, except this executes prior to checking the condition

Using do-while loop Using while loop
int count = 0; int count = 0;
do { while (count < 10) {
printf (“count = %d\n”, count); printf (“count = %d\n”, count);
count++; count++;
} }
while (count < 10);

Will these behave the same if we change the conditionto count < 0

Logistics Operators if, else-if switch statements Loops Finishing Up
[

break, continue

break exits the current loop or switch statement

If you are in the inner-loop of a nested loop, it only exits the inner loop

continue jumps to the condition check of the current loop

Logistics Operators if, else-if switch statements Loops Finishing Up
L

Good Programming Practice

Use break and continue sparingly

Overusing these can easily create spaghetti code

Code can often be refactored with if conditions or later, function returns instead
The right loop for the right task

Use for loops when the iteration count is known

Use do-while loops only when execution must happen once (like user input)
Naming conventions

Use consistent and descriptive naming for variables

Even though i, 7 aren’t descriptive, it is customary to use these as iterators in for
loops

Logistics

Operators if, else-if switch statements

Loops — Practice

Let’s Practice

Loops

Finishing Up
o

Pay close attention — These resemble what you will see on quizzes and exams

// loop 1

int count = 0;

do {
printf (“count = %d\n”, count);
count++;

}

while (count < 0);

Loop 1 prints time(s)

// loop 2

int count = 0;

while (count < 0) {
printf (“count = %d\n”, count);
count++;

Loop 2 prints time(s)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

