
CS 262 Lecture 4: Operators Part 2, Control Flow

Operators
Relational operators
Logical operators

Control Flow – Conditional
Expressions

if statements
else-if statements
switch statements

Control Flow - Loops
for loops
while loops
do-while loops

Control Flow – Break, Continue

Overview of Lecture 4

if, else-if switch statementsLogistics Loops Finishing UpOperators

Relational Operators

Relational Operators
Let you perform a comparison between two operators with Boolean Algebra
Recall from last class: 0 is false, anything else is true
A relational operator will always evaluate to either 0 or 1

Operator Description Example Result
== Equal to 5 == 3 0 (False)
!= Not equal to 5 != 3 1 (True)
< Less than 5 < 2 0 (False)
> Greater than 5 > 2 1 (True)

<= Less than or equal to 5 <= 2 0 (False)
>= Greater than or equal to 5 >= 2 1 (True)

if, else-if switch statementsLogistics Loops Finishing UpOperators

Logical Operators

Logical Operators
Let you test multiple expressions using Boolean logic
Just like relational operators, these will always evaluate to either 0 or 1

These also work with several expressions

Operator Description Example Result
&& Logical And (1 > 5) && (8 > 3) 0 (False)
|| Logical Or (1 > 5) || (8 > 3) 1 (True)
! Logical Not !(1 == 5) 1 (True)

(1 > 4) || (2 > 4) || (3 > 4) || (4 > 4) || (5 > 4)

if, else-if switch statementsLogistics Loops Finishing UpOperators

Logical Operators

Special Rules/Considerations
false && anything == false

true || anything == true

If the expression is known to be true or false before it finishes
evaluating the entire thing, execution stops

(1 > 2) && (1 == 1) && (1 == 1) && (1 == 1)

We already know the entire
expression is false after this

if, else-if switch statementsLogistics Loops Finishing UpOperators

if Statements

if Statement
 Same as you remember from other languages

if(expression) {

 // Execute statement1 if expression is true

 statement1;

}

else {

 // Execute statement2 if expression is false

 statement2;

}

if, else-if switch statementsLogistics Loops Finishing UpOperators

Nested if Statements

Nested if Statements

if(expression1) {

 // expression1 is true

 if(expression2) {

 // only executed if both expression1, expression2 are true

}

 else {

 // expression1 true, expression2 false

 }

}

else {

 // expression1 false

}

if, else-if switch statementsLogistics Loops Finishing UpOperators

else-if statements

else-if statements

if(expression1) {

 // expression1 is true

}

else if(expression2) {

 // expression1 is false, but expression2 is true

}

else {

 // both are false

}

if, else-if switch statementsLogistics Loops Finishing UpOperators

Switch Statements

switch Statements
 A more efficient, but more limited version of if-else-if

switch(expression or variable) {

 case 1: printf(“This is case 1\n”);

 break;

}

 case 2: printf(“This is case 2\n”);

 break;

}

 case 3: printf(“This is case 3\n”);

 break;

}

 default: printf(“No cases occurred\n”);

 break;

}

if, else-if switch statementsLogistics Loops Finishing UpOperators

Switch Statements

switch Statements – Rules and Behavior
 Only one branch will match

 Case values must be int, char, short, or long

 default is required, and is invoked if no cases match

 Each case ends with break; which exits the statement when a branch matches

if, else-if switch statementsLogistics Loops Finishing UpOperators

Switch Statements vs if-else

switch Statements vs if-else – When Do We Use Them?

if, else-if switch statementsLogistics Loops Finishing UpOperators

Feature if-else switch

Data type Any Only int types

Conditions Can use any comparison Only checks for equality (==)

Execution flow Sequential evaluation Jumps directly to matching case

Readability Good for complex
conditions

Cleaner for multiple discrete
values

Performance Slower due to sequential
checking

Can be faster due to jump table
(367 stuff)

Fall-through Behavior Greater than or equal to Executes cases sequentially
unless break is used

Loops

for Loops
 Ideal for counting, when we know how many iterations to execute

ahead of time

while Loops
 Checks if a condition is true before running

do-while Loops
 Always runs at least once before checking the condition

if, else-if switch statementsLogistics Loops Finishing UpOperators

for Loop

for Loops
 Perfect for when you know how many times you need to execute something

 We can also nest for loops

note: variables declared when a loop is initialized
do not exist outside of the loop

for(int i=0; i<5; i++) {

 printf(“i is currently %d\n”, i);

}

for(int i=0; i<5; i++) {

 for(int j=0; j<i; j++) {

 printf(“i = %d, j = %d\n”, i, j);

 }

}

if, else-if switch statementsLogistics Loops Finishing UpOperators

while Loop

while Loops
 Checks if a condition is met, then executes the loop if it is

char buffer[20];

int number = 0;

printf(“Enter a number (0 to exit)\n”);

fgets(buffer, sizeof(buffer), stdin);

sscanf(buffer, “%d”, &number);

while(number !=0) {

 printf(“you entered %d\nEnter another number\n”, number);

 fgets(buffer, sizeof(buffer), stdin);

 sscanf(buffer, “%d”, &number);

}

printf(“Exiting\n”);

if, else-if switch statementsLogistics Loops Finishing UpOperators

do-while Loop

do-while Loop
 Similar to the while loop, except this executes prior to checking the condition

int count = 0;

do {

 printf(”count = %d\n”, count);

 count++;

}

while (count < 10);

int count = 0;

while (count < 10) {

 printf(”count = %d\n”, count);

 count++;

}

Using do-while loop Using while loop

Will these behave the same if we change the condition to count < 0

if, else-if switch statementsLogistics Loops Finishing UpOperators

break, continue

break exits the current loop or switch statement
 If you are in the inner-loop of a nested loop, it only exits the inner loop

continue jumps to the condition check of the current loop

if, else-if switch statementsLogistics Loops Finishing UpOperators

Good Programming Practice

Use break and continue sparingly
 Overusing these can easily create spaghetti code

 Code can often be refactored with if conditions or later, function returns instead

The right loop for the right task
 Use for loops when the iteration count is known

 Use do-while loops only when execution must happen once (like user input)

Naming conventions
 Use consistent and descriptive naming for variables
 Even though i, j aren’t descriptive, it is customary to use these as iterators in for

loops

if, else-if switch statementsLogistics Loops Finishing UpOperators

Loops – Practice

Let’s PracticeLet’s Practice
Pay close attention – These resemble what you will see on quizzes and exams

// loop 1

int count = 0;

do {

 printf(”count = %d\n”, count);

 count++;

}

while (count < 0);

// loop 2

int count = 0;

while (count < 0) {

 printf(”count = %d\n”, count);

 count++;

}

Loop 1 prints _____ time(s) Loop 2 prints _____ time(s)

if, else-if switch statementsLogistics Loops Finishing UpOperators

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

