CS 262 Lecture 5: Arrays Part 1

(G V, | GEORGE MASON
UNIVERSITY.

Logistics Array Basics Weird Array Things Swapping, Printing Strings
o

Overview of Lecture 5

Arrays
Introduction to what arrays are in C
Comparing C arrays with other familiar structures from Python/Java
Initialization, etc
Weird behavior
Basic array ‘operations’

Logistics Array Basics Weird Array Things Swapping, Printing Strings
[]

Array Basics

An array is a collection of elements stored in a contiguous
memory location, all of the same data type

Arrays
Have a size that is fixed a declaration
Can only store elements of the same type
Have no built-in operations (must manually write searching, sorting,
and so on)
All arrays begin with index O

Logistics Array Basics Weird Array Things Swapping, Printing Strings
o

C Arrays vs Python Lists vs Java Arrays

How do C arrays compare with structures we already know?

Resizeability Fixed Fixed Dynamic
Memory Manual Automatic (Garbage Automatic
Management collection)

Bounds Checking No Yes Yes
Default Initialization No (Garbage values) Yes (0/null) Yes (None)
Operations None built-in Some built-in Many

Performance Fastest Moderate Slowest

Logistics Array Basics Weird Array Things Swapping, Printing Strings
o

Declaring an Array

Syntax for declaring an array

type name[num elements];

So if | want a character array of size 5 ..

char arr[5];

And let’s see how this array look in memory

char arr[5];

E I <

Memory Address 100 101 102 103 104 105

Logistics Array Basics Weird Array Things Swapping, Printing Strings
o

Initialization
Option 1 Option 2
Initialization with specified size Initialization without size
int arr[3] = {1, 2, 3}; int arx[] = {1, 2, 3};
1213 11213
Option 3 Option 4
Partial Initialization Initialize to all Os
int arr[5] = {1, 2}; int arr[100] = {0};

Logistics Array Basics Weird Array Things Swapping, Printing Strings
[

Array of ints

Syntax for declaring an array

type name[num_elements] = {wvar, var, ..., var};

So if | want a character array of size 5 ..

int arr[5] = {2, 4, 8, 16, 32};

And let’s see how this array looks in memory

arr[0] arr([1l] arr([2] arr[3] arr[4]

2 4 8 16 32

100 104 108 10C 110 114

Logistics Array Basics Weird Array Things Swapping, Printing Strings
[

Size in Memory

sizeof() Function

Just like we used sizeof() on variable types to learn their size (in bytes), we can do
the same for an array

int arr[5] = {2, 4, 8, 16, 32};
printf (“arr is %d bytes”, sizeof (arr)):;

arr[0] arr[1] arr[2] arr[3] arr[4]

2 4 8 16 32

| 100 104 108 10C 110 114 I

4 bytes * 5 elements = 20 bytes

Logistics Array Basics Weird Array Things Swapping, Printing Strings
o

Modifying and Accessing Elements

int arr[5];

arr[0] arr[1l] arr[2] arr[3] arr[4]

“ % “ Z &

100 104 108 10C 110 114

arr[0] = 10;
arr[2] = 25;

arr|[0] arr|[1l] arr|[2] arr[3] arr([4]

100 104 108 10C 110 114

Logistics Array Basics Weird Array Things Swapping, Printing Strings
o

Modifying and Accessing Elements

arr|[0] arr([1l] arr[2] arr[3] arr([4]

10 & 25 & “

100 104 108 10C 110 114

arr[4] = arr[0] + arr[2]

arr|[0] arr[1l] arr[2] arr[3] arr([4]

10 E 25 & 35

100 104 108 10C 110 114

Logistics Array Basics Weird Array Things Swapping, Printing Strings

Out Of Bounds Reads and Writes

27 arr[10] = 250; 77
arr[0] arr([1l] arr[2] arr[3] arr([4]
10 ? 25 ? 35
100 104 108 10C 110 114

10 | ? | 25| ? | 35 250

100 104 108 10C 110 114 12C

Logistics Array Basics Weird Array Things Swapping, Printing Strings
[

Out of Bounds Reads and Writes

What Just Happened?

An array of size 5 was declared, meaning space for 5 integers was
allocated contiguously in memory

When we tried to access arr[10], we reached beyond the allocated
block

C does not stop us from doing this despite it not being part of the
declared array

Logistics Array Basics Weird Array Things Swapping, Printing Strings
o

Out of Bounds Reads and Writes

Is this ok to do?
If there is extra unused memory, the program might seem to work fine

This memory could be in use by another variable or function call

Even if it appears to work fine (no crash), it could lead to silent
corruption (data being corrupted elsewhere in the program)

Logistics

Array Basics

Swapping Values

Weird Array Things

Swapping, Printing
o

Strings

Temp
[01 [1] [2] [31 [4]
10 —>
.| 10| ? | 25| ? | 35
S— /
[0] [1] [2] [3] [4] Temp
25 | 2 | 25| 2?2 | 35 10)
~_
[01 [11 [2] [3] [4] ~eTP
25 | ? 10 ? | 35 10
\ _~ —>

// swap arr[0] with arr[2]

int temp = arr[0];
arr[0] = arr[2];
arr[2] = temp;

// swap arr[0] with arr[2]
int temp

arr[0]
arr[2]

= arr[0];
arr[2];
temp;

// swap arr[0] with arr[2]
int temp = arr[0];

arr[0]

arr[2]

arr[2];
temp;

Logistics Array Basics Weird Array Things Swapping, Printing Strings
[

Printing An Array

There’s no built-in way to do this, so we just use a familiar
for loop

for (int i1i=0; i1<5; 1i++) {
printf (“%d\n”, arr[i]);

}

Logistics Array Basics

Strings

Weird Array T

hings Swapping, Printing

Strings
[

In C, strings are null-terminated arrays of chars

Memory Address

char arr[6] — {\HI’ \e/’ \l/’ \l/’ ‘O’, \\O/}’.
char arr[6] = “Hello”;
‘H’ ‘e’ ‘l’ ‘l’ ‘O’ ‘\0’
100 101 102 103 104 105 106

Logistics Array Basics Weird Array Things Swapping, Printing Strings
o

Strings

What is this ‘\0’ character?

C does not know where a string is supposed to end. It just keeps reading memory
until it finds ‘\O’ or until it crashes

char str[b] = {‘H', ‘e’, ‘17, ‘1", ‘o’};
printf (“%$s”, str); // Keeps printing until it sees '\0;

‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ves ‘\0’

100 101 102 103 104 105 ??°?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

