
CS 262 Lecture 5: Arrays Part 1

Overview of Lecture 5

Arrays
Introduction to what arrays are in C
Comparing C arrays with other familiar structures from Python/Java
Initialization, etc
Weird behavior
Basic array ‘operations’

Logistics Array Basics Weird Array Things Swapping, Printing Strings

Array Basics

An array is a collection of elements stored in a contiguous
memory location, all of the same data type
Arrays

Have a size that is fixed a declaration
Can only store elements of the same type
Have no built-in operations (must manually write searching, sorting,
and so on)
All arrays begin with index 0

Logistics Array Basics Weird Array Things Swapping, Printing Strings

C Arrays vs Python Lists vs Java Arrays

How do C arrays compare with structures we already know?

Feature C Array Java Array Python List

Resizeability Fixed Fixed Dynamic

Memory
Management

Manual Automatic (Garbage
collection)

Automatic

Bounds Checking No Yes Yes

Default Initialization No (Garbage values) Yes (0/null) Yes (None)

Operations None built-in Some built-in Many

Performance Fastest Moderate Slowest

Logistics Array Basics Weird Array Things Swapping, Printing Strings

...

Declaring an Array

Syntax for declaring an array

So if I want a character array of size 5 ..

And let’s see how this array look in memory

char arr[5];

type name[num_elements];

? ? ? ? ?

char arr[5];

100 101 102 103 104

...

105Memory Address

Logistics Array Basics Weird Array Things Swapping, Printing Strings

Initialization

 Option 1 Option 2
Initialization with specified size Initialization without size

 Option 3 Option 4

 Partial Initialization Initialize to all 0s

int arr[5] = {1, 2};

int arr[3] = {1, 2, 3}; int arr[] = {1, 2, 3};

int arr[100] = {0};

1 2 3 1 2 3

1 2 0 0 0 00 0 ... 0

Logistics Array Basics Weird Array Things Swapping, Printing Strings

...

Array of ints

Syntax for declaring an array

So if I want a character array of size 5 ..

And let’s see how this array looks in memory

int arr[5] = {2, 4, 8, 16, 32};

type name[num_elements] = {var, var, ..., var};

2 4 8 16 32

100 104 108 11010C

...

114

arr[0] arr[1] arr[2] arr[3] arr[4]

Logistics Array Basics Weird Array Things Swapping, Printing Strings

...

Size in Memory

sizeof() Function
Just like we used sizeof() on variable types to learn their size (in bytes), we can do
the same for an array

int arr[5] = {2, 4, 8, 16, 32};

printf(“arr is %d bytes”, sizeof(arr));

2 4 8 16 32

100 104 108 11010C

...

114

arr[0] arr[1] arr[2] arr[3] arr[4]

4 bytes * 5 elements = 20 bytes

Logistics Array Basics Weird Array Things Swapping, Printing Strings

...

Modifying and Accessing Elements

int arr[5];

? ? ? ? ?

100 104 108 11010C

...

114

arr[0] arr[1] arr[2] arr[3] arr[4]

arr[0] = 10;

arr[2] = 25;

... 10 ? 25 ? ?

100 104 108 11010C

...

114

arr[0] arr[1] arr[2] arr[3] arr[4]

Logistics Array Basics Weird Array Things Swapping, Printing Strings

Modifying and Accessing Elements

... 10 ? 25 ? ?

100 104 108 11010C

...

114

arr[0] arr[1] arr[2] arr[3] arr[4]

arr[4] = arr[0] + arr[2]

... 10 ? 25 ? 35

100 104 108 11010C

...

114

arr[0] arr[1] arr[2] arr[3] arr[4]

Logistics Array Basics Weird Array Things Swapping, Printing Strings

Out Of Bounds Reads and Writes

... 10 ? 25 ? 35

100 104 108 11010C

...

114

arr[0] arr[1] arr[2] arr[3] arr[4]

arr[10] = 250;?? ??

12C

... 10 ? 25 ? 35

100 104 108 10C 110

... 250

114

...

We modified a
memory location

past the end of the
array

Logistics Array Basics Weird Array Things Swapping, Printing Strings

Out of Bounds Reads and Writes

What Just Happened?
An array of size 5 was declared, meaning space for 5 integers was
allocated contiguously in memory

When we tried to access arr[10], we reached beyond the allocated
block

C does not stop us from doing this despite it not being part of the
declared array

Logistics Array Basics Weird Array Things Swapping, Printing Strings

Out of Bounds Reads and Writes

Is this ok to do?
If there is extra unused memory, the program might seem to work fine

This memory could be in use by another variable or function call

Even if it appears to work fine (no crash), it could lead to silent
corruption (data being corrupted elsewhere in the program)

Logistics Array Basics Weird Array Things Swapping, Printing Strings

Swapping Values

// swap arr[0] with arr[2]

int temp = arr[0];

arr[0] = arr[2];

arr[2] = temp;
... 10 ? 25 ? 35 ...

10

Temp

// swap arr[0] with arr[2]

int temp = arr[0];

arr[0] = arr[2];

arr[2] = temp;

... 25 ? 25 ? 35 ...

[0] [1] [2] [3] [4]

[0] [1] [2] [3] [4]

// swap arr[0] with arr[2]

int temp = arr[0];

arr[0] = arr[2];

arr[2] = temp;

... 25 ? 10 ? 35 ...

[0] [1] [2] [3] [4]

10

Temp

10

Temp

Logistics Array Basics Weird Array Things Swapping, Printing Strings

Printing An Array

There’s no built-in way to do this, so we just use a familiar
for loop

for(int i=0; i<5; i++) {

 printf(“%d\n”, arr[i]);

}

Logistics Array Basics Weird Array Things Swapping, Printing Strings

...

Strings

In C, strings are null-terminated arrays of chars

=

=

char arr[6] = {‘H’, ‘e’, ‘l’, ‘l’, ‘o’, ‘\0’};

‘H’ ‘e’ ‘l’ ‘l’ ‘o’

100 101 102 103 104 105Memory Address

char arr[6] = “Hello”;

‘\0’ ...

106

Logistics Array Basics Weird Array Things Swapping, Printing Strings

...

Strings

What is this ‘\0’ character?

C does not know where a string is supposed to end. It just keeps reading memory
until it finds ‘\0’ or until it crashes

‘H’ ‘e’ ‘l’ ‘l’ ‘o’

100 101 102 103 104 105

...

char str[5] = {‘H’, ‘e’, ‘l’, ‘l’, ‘o’};

printf(“%s”, str); // Keeps printing until it sees ‘\0;

‘\0’
We don’t know

when we will
finally find ‘\0’

???

Logistics Array Basics Weird Array Things Swapping, Printing Strings

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

